Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Clin Invest ; 133(13)2023 07 03.
Artículo en Inglés | MEDLINE | ID: covidwho-2326027

RESUMEN

BackgroundSARS-CoV-2 infection in Africa has been characterized by a less severe disease profile than what has been observed elsewhere, but the profile of SARS-CoV-2-specific adaptive immunity in these mainly asymptomatic patients has not, to our knowledge, been analyzed.MethodsWe collected blood samples from residents of rural Kenya (n = 80), who had not experienced any respiratory symptoms or had contact with individuals with COVID-19 and had not received COVID-19 vaccines. We analyzed spike-specific antibodies and T cells specific for SARS-CoV-2 structural (membrane, nucleocapsid, and spike) and accessory (ORF3a, ORF7, ORF8) proteins. Pre-pandemic blood samples collected in Nairobi (n = 13) and blood samples from mild-to-moderately symptomatic COVID-19 convalescent patients (n = 36) living in the urban environment of Singapore were also studied.ResultsAmong asymptomatic Africans, we detected anti-spike antibodies in 41.0% of the samples and T cell responses against 2 or more SARS-CoV-2 proteins in 82.5% of samples examined. Such a pattern was absent in the pre-pandemic samples. Furthermore, distinct from cellular immunity in European and Asian COVID-19 convalescents, we observed strong T cell immunogenicity against viral accessory proteins (ORF3a, ORF8) but not structural proteins, as well as a higher IL-10/IFN-γ cytokine ratio profile.ConclusionsThe high incidence of T cell responses against different SARS-CoV-2 proteins in seronegative participants suggests that serosurveys underestimate SARS-CoV-2 prevalence in settings where asymptomatic infections prevail. The functional and antigen-specific profile of SARS-CoV-2-specific T cells in African individuals suggests that environmental factors can play a role in the development of protective antiviral immunity.FundingUS Centers for Disease Control and Prevention, Division of Global Health Protection; the Singapore Ministry of Health's National Medical Research Council (COVID19RF3-0060, COVID19RF-001, COVID19RF-008, MOH-StaR17Nov-0001).


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Adulto , Kenia/epidemiología , Linfocitos T , COVID-19/epidemiología , Vacunas contra la COVID-19 , Prevalencia , Anticuerpos Antivirales
2.
Immunol Cell Biol ; 2023 May 22.
Artículo en Inglés | MEDLINE | ID: covidwho-2326861

RESUMEN

Koutsakos et al. have recently published an article showing that SARS-CoV-2 breakthrough infection results in robust naïve and memory T cell activation, and the activity of CD8 T cells strongly correlates with viral clearance.

3.
Gut ; 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: covidwho-2251999
4.
Dig Liver Dis ; 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: covidwho-2231205

RESUMEN

BACKGROUND AND AIMS: COVID-19 mRNA vaccines were approved to prevent severe forms of the disease, but their immunogenicity and safety in cirrhosis is poorly known. METHOD: In this prospective single-center study enrolling patients with cirrhosis undergoing COVID-19 vaccination (BNT162b2 and mRNA-1273), we assessed humoral and cellular responses vs healthy controls, the incidence of breakthrough infections and adverse events (AEs). Antibodies against spike- and nucleocapsid-protein (anti-S and anti-N) and Spike-specific T-cells responses were quantified at baseline, 21 days after the first and second doses and during follow-up. RESULTS: 182 cirrhotics (85% SARS-CoV-2-naïve) and 38 controls were enrolled. After 2 doses of vaccine, anti-S titres were significantly lower in cirrhotics vs controls [1,751 (0.4-25,000) U/mL vs 4,523 (259-25,000) U/mL, p=0.012] and in SARS-CoV-2-naïve vs previously infected cirrhotics [999 (0.4-17,329) U/mL vs 7,500 (12.5-25,000) U/mL, (p<0.001)]. T-cell responses in cirrhotics were similar to controls, although with different kinetics. In SARS-CoV-2-naïve cirrhotics, HCC, Child-Pugh B/C and BNT162b2 were independent predictors of low response. Neither unexpected nor severe AEs emerged. During follow-up, 2% turned SARS-CoV-2 positive, all asymptomatic. CONCLUSION: Humoral response to COVID-19 vaccines appeared suboptimal in patients with cirrhosis, particularly in SARS-CoV-2-naïve decompensated cirrhotics, although cellular response appeared preserved, and low breakthrough infections rate was registered.

6.
Cell Rep Med ; 3(11): 100793, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: covidwho-2061977

RESUMEN

Unlike mRNA vaccines based only on the spike protein, inactivated severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines should induce a diversified T cell response recognizing distinct structural proteins. Here, we perform a comparative analysis of SARS-CoV-2-specific T cells in healthy individuals following vaccination with inactivated SARS-CoV-2 or mRNA vaccines. Relative to spike mRNA vaccination, inactivated vaccines elicit a lower magnitude of spike-specific T cells, but the combination of membrane, nucleoprotein, and spike-specific T cell response is quantitatively comparable with the sole spike T cell response induced by mRNA vaccine, and they efficiently tolerate the mutations characterizing the Omicron lineage. However, this multi-protein-specific T cell response is not mediated by a coordinated CD4 and CD8 T cell expansion but by selective priming of CD4 T cells. These findings can help in understanding the role of CD4 and CD8 T cells in the efficacy of the different vaccines to control severe COVID-19 after Omicron infection.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , SARS-CoV-2/genética , Vacunas contra la COVID-19 , Vacunas Virales/genética , ARN Mensajero/genética , COVID-19/prevención & control
7.
Immunity ; 55(10): 1764-1778, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: covidwho-2061284

RESUMEN

Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increasing ability to evade neutralizing antibodies have emerged. Thus, earlier interest in defining the correlates of protection from infection, mainly mediated by humoral immunity, has shifted to correlates of protection from disease, which require a more comprehensive analysis of both humoral and cellular immunity. In this review, we summarized the evidence that supports the role of SARS-CoV-2-specific T cells induced by infection, by vaccination or by their combination (defined as hybrid immunity) in disease protection. We then analyzed the different epidemiological and virological variables that can modify the magnitude, function, and anatomical localization of SARS-CoV-2-specific T cells and their influence in the possible ability of T cells to protect the host from severe COVID-19 development.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Inmunidad Humoral , Pandemias , Linfocitos T , Vacunación
8.
J Clin Invest ; 132(12)2022 06 15.
Artículo en Inglés | MEDLINE | ID: covidwho-2053516

RESUMEN

BACKGROUNDPatients undergoing immune-modifying therapies demonstrate a reduced humoral response after COVID-19 vaccination, but we lack a proper evaluation of the effect of such therapies on vaccine-induced T cell responses.METHODSWe longitudinally characterized humoral and spike-specific T cell responses in patients with inflammatory bowel disease (IBD), who were on antimetabolite therapy (azathioprine or methotrexate), TNF inhibitors, and/or other biologic treatment (anti-integrin or anti-p40) for up to 6 months after completing 2-dose COVID-19 mRNA vaccination.RESULTSWe demonstrate that a spike-specific T cell response was not only induced in treated patients with IBD at levels similar to those of healthy individuals, but also sustained at higher magnitude for up to 6 months after vaccination, particularly in those treated with TNF inhibitor therapy. Furthermore, the spike-specific T cell response in these patients was mainly preserved against mutations present in SARS-CoV-2 B.1.1.529 (Omicron) and characterized by a Th1/IL-10 cytokine profile.CONCLUSIONDespite the humoral response defects, patients under immune-modifying therapies demonstrated a favorable profile of vaccine-induced T cell responses that might still provide a layer of COVID-19 protection.FUNDINGThis study was funded by the National Centre for Infectious Diseases (NCID) Catalyst Grant (FY2021ES) and the National Research Fund Competitive Research Programme (NRF-CRP25-2020-0003).


Asunto(s)
COVID-19 , Enfermedades Inflamatorias del Intestino , Vacunas Virales , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Humanos , Enfermedades Inflamatorias del Intestino/terapia , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Linfocitos T , Vacunación , Vacunas Virales/genética
9.
Nat Commun ; 13(1): 4615, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: covidwho-2036813

RESUMEN

Understanding the impact of age on vaccinations is essential for the design and delivery of vaccines against SARS-CoV-2. Here, we present findings from a comprehensive analysis of multiple compartments of the memory immune response in 312 individuals vaccinated with the BNT162b2 SARS-CoV-2 mRNA vaccine. Two vaccine doses induce high antibody and T cell responses in most individuals. However, antibody recognition of the Spike protein of the Delta and Omicron variants is less efficient than that of the ancestral Wuhan strain. Age-stratified analyses identify a group of low antibody responders where individuals ≥60 years are overrepresented. Waning of the antibody and cellular responses is observed in 30% of the vaccinees after 6 months. However, age does not influence the waning of these responses. Taken together, while individuals ≥60 years old take longer to acquire vaccine-induced immunity, they develop more sustained acquired immunity at 6 months post-vaccination. A third dose strongly boosts the low antibody responses in the older individuals against the ancestral Wuhan strain, Delta and Omicron variants.


Asunto(s)
COVID-19 , Vacunas Virales , Anciano , Anticuerpos Antivirales , Formación de Anticuerpos , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Persona de Mediana Edad , SARS-CoV-2 , Vacunación , Vacunas Sintéticas , Vacunas de ARNm
10.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: covidwho-2032989

RESUMEN

The emergence of new SARS-CoV-2 lineages able to escape antibodies elicited by infection or vaccination based on the Spike protein of the Wuhan isolates has reduced the ability of Spike-specific antibodies to protect previously infected or vaccinated individuals from infection. Therefore, the role played by T cells in the containment of viral replication and spread after infection has taken a more central stage. In this brief review, we will discuss the role played by T cells in the protection from COVID-19, with a particular emphasis on the kinetics of the T cell response and its localization at the site of primary infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Cinética , Glicoproteína de la Espiga del Coronavirus , Linfocitos T , Vacunación
11.
Curr Res Immunol ; 3: 215-221, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2007637

RESUMEN

As vaccine deployment improves the healthcare emergency status caused by the SARS-CoV-2 pandemic, we need reliable tools to evaluate the duration of protective immunity at a global scale. Seminal studies have demonstrated that while neutralizing antibodies can protect us from viral infection, T cell-mediated cellular immunity provides long-term protection from severe COVID-19, even in the case of emerging new variants of concern (VOC). Indeed, the emergence of VOCs, able to substantially escape antibodies generated by current vaccines, has made the analysis of correlates of humoral protection against infection obsolete. The focus should now shift towards immunological correlates of protection from disease based on quantification of cellular immunity. Despite this evidence, an assessment of T cell responses is still overlooked. This is largely due to technical challenges and lack of validated diagnostic tests. Here, we review the current state of the art of available tests to distinguish between SARS-CoV-2 antigen-specific Tcells and non-antigen specific T-cells. These assays range from the analysis of the T cell-receptor (TCR) diversity (i.e. Immunoseq and MHC tetramer staining) to the detection of functional T cell activation (i.e. ICS, AIM, Elispot, ELLA, dqTACT, etc.) either from purified Peripheral Blood Mononuclear Cells (PBMCs) or whole blood. We discuss advantages and disadvantages of each assay, proposing their ideal use for different scopes. Finally, we argue how it is paramount to deploy cheap, standardized, and scalable assays to measure T cell functionality to fill this critical diagnostic gap and manage these next years of the pandemic.

12.
Immunity ; 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-1998428

RESUMEN

Since the onset of the pandemic, multiple SARS-CoV-2 variants have emerged with increasing ability to evade neutralizing antibodies. Thus, earlier interest in defining the correlates of protection from infection, mainly mediated by humoral immunity, has shifted to correlates of protection from disease, which require a more comprehensive analysis of both humoral and cellular immunity. In this review, we summarized the evidence that supports the role of SARS-CoV-2-specific T cells induced by infection, by vaccination or by their combination (defined as hybrid immunity) in disease protection. We then analyzed the different epidemiological and virological variables that can modify the magnitude, function and anatomical localization of SARS-CoV-2-specific T cells and their influence in the ability of T cells to protect the host from severe COVID-19 development. The emergence of SARS-CoV-2 variants capable of evading neutralizing antibodies have increased the interest in defining the immunological correlates of disease protection. Bertoletti, Le Bert, and Tan summarize how SARS-CoV-2-specific T cell magnitude, function and anatomical localization can affect the their ability to protect against severe COVID-19.

13.
J Exp Med ; 219(10)2022 10 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1991982

RESUMEN

Rapid recognition of SARS-CoV-2-infected cells by resident T cells in the upper airway might provide an important layer of protection against COVID-19. Whether parenteral SARS-CoV-2 vaccination or infection induces nasal-resident T cells specific for distinct SARS-CoV-2 proteins is unknown. We isolated T cells from the nasal mucosa of COVID-19 vaccinees who either experienced SARS-CoV-2 infection after vaccination (n = 34) or not (n = 16) and analyzed their phenotype, SARS-CoV-2 specificity, function, and persistence. Nasal-resident SARS-CoV-2-specific CD8+ and CD4+ T cells were detected almost exclusively in vaccinees who experienced SARS-CoV-2 breakthrough infection. Importantly, the Spike-specific T cells primed by vaccination did not suppress the induction of T cells specific for other SARS-CoV-2 proteins. The nasal-resident T cell responses persisted for ≥140 d, with minimal sign of waning. These data highlight the importance of viral nasal challenge in the formation of SARS-CoV-2-specific antiviral immunity at the site of primary infection and further define the immunological features of SARS-CoV-2 hybrid immunity.


Asunto(s)
COVID-19 , Anticuerpos Antivirales , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2 , Vacunación
14.
Curr Opin Virol ; 55: 101253, 2022 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1956114

Asunto(s)
Virosis , Humanos
16.
Cell Host Microbe ; 27(6): 879-882.e2, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1719463

RESUMEN

The inflammatory response to SARS-coronavirus-2 (SARS-CoV-2) infection is thought to underpin COVID-19 pathogenesis. We conducted daily transcriptomic profiling of three COVID-19 cases and found that the early immune response in COVID-19 patients is highly dynamic. Patient throat swabs were tested daily for SARS-CoV-2, with the virus persisting for 3 to 4 weeks in all three patients. Cytokine analyses of whole blood revealed increased cytokine expression in the single most severe case. However, most inflammatory gene expression peaked after respiratory function nadir, except expression in the IL1 pathway. Parallel analyses of CD4 and CD8 expression suggested that the pro-inflammatory response may be intertwined with T cell activation that could exacerbate disease or prolong the infection. Collectively, these findings hint at the possibility that IL1 and related pro-inflammatory pathways may be prognostic and serve as therapeutic targets for COVID-19. This work may also guide future studies to illuminate COVID-19 pathogenesis and develop host-directed therapies.


Asunto(s)
Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , Neumonía Viral/genética , Neumonía Viral/inmunología , Adulto , Anciano , Variación Biológica Individual , COVID-19 , Análisis por Conglomerados , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/patología , Citocinas/sangre , Regulación de la Expresión Génica , Humanos , Masculino , Pandemias , Neumonía Viral/sangre , Neumonía Viral/patología , Transcriptoma , Regulación hacia Arriba
17.
Med (N Y) ; 3(2): 104-118.e4, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1628746

RESUMEN

BACKGROUND: Protection offered by coronavirus disease 2019 (COVID-19) vaccines wanes over time, requiring an evaluation of different boosting strategies to revert such a trend and enhance the quantity and quality of Spike-specific humoral and cellular immune responses. These immunological parameters in homologous or heterologous vaccination boosts have thus far been studied for mRNA and ChAdOx1 nCoV-19 vaccines, but knowledge on individuals who received a single dose of Ad26.COV2.S is lacking. METHODS: We studied Spike-specific humoral and cellular immunity in Ad26.COV2.S-vaccinated individuals (n = 55) who were either primed with Ad26.COV2.S only (n = 13) or were boosted with a homologous (Ad26.COV2.S, n = 28) or heterologous (BNT162b2, n = 14) second dose. We compared our findings with the results found in individuals vaccinated with a single (n = 16) or double (n = 44) dose of BNT162b2. FINDINGS: We observed that a strategy of heterologous vaccination enhanced the quantity and breadth of both Spike-specific humoral and cellular immunity in Ad26.COV2.S-vaccinated individuals. In contrast, the impact of the homologous boost was quantitatively minimal in Ad26.COV2.S-vaccinated individuals, and Spike-specific antibodies and T cells were narrowly focused to the S1 region. CONCLUSIONS: Despite the small sample size of the study and the lack of well-defined correlates of protection against COVID-19, the immunological features detected support the utilization of a heterologous vaccine boost in individuals who received Ad26.COV2.S vaccination. FUNDING: This study is partially supported by the Singapore Ministry of Health's National Medical Research Council under its COVID-19 Research Fund (COVID19RF3-0060, COVID19RF-001, and COVID19RF-008), The Medical College St. Bartholomew's Hospital Trustees - Pump Priming Fund for SMD COVID-19 Research.


Asunto(s)
Ad26COVS1 , COVID-19 , Anticuerpos Neutralizantes , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , ChAdOx1 nCoV-19 , Humanos , SARS-CoV-2
19.
Emerg Microbes Infect ; 10(1): 2141-2150, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1532382

RESUMEN

BACKGROUND: We studied humoral and cellular responses against SARS-CoV-2 longitudinally in a homogeneous population of healthy young/middle-aged men of South Asian ethnicity with mild COVID-19. METHODS: In total, we recruited 994 men (median age: 34 years) post-COVID-19 diagnosis. Repeated cross-sectional surveys were conducted between May 2020 and January 2021 at six time points - day 28 (n = 327), day 80 (n = 202), day 105 (n = 294), day 140 (n = 172), day 180 (n = 758), and day 280 (n = 311). Three commercial assays were used to detect anti-nucleoprotein (NP) and neutralizing antibodies. T cell response specific for Spike, Membrane and NP SARS-CoV-2 proteins was tested in 85 patients at day 105, 180, and 280. RESULTS: All serological tests displayed different kinetics of progressive antibody reduction while the frequency of T cells specific for different structural SARS-CoV-2 proteins was stable over time. Both showed a marked heterogeneity of magnitude among the studied cohort. Comparatively, cellular responses lasted longer than humoral responses and were still detectable nine months after infection in the individuals who lost antibody detection. Correlation between T cell frequencies and all antibodies was lost over time. CONCLUSION: Humoral and cellular immunity against SARS-CoV-2 is induced with differing kinetics of persistence in those with mild disease. The magnitude of T cells and antibodies is highly heterogeneous in a homogeneous study population. These observations have implications for COVID-19 surveillance, vaccination strategies, and post-pandemic planning.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/inmunología , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Adulto , Anticuerpos Neutralizantes/sangre , Estudios Transversales , Humanos , Masculino , Proteínas de la Nucleocápside/inmunología
20.
Nature ; 601(7891): 110-117, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1510600

RESUMEN

Individuals with potential exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) do not necessarily develop PCR or antibody positivity, suggesting that some individuals may clear subclinical infection before seroconversion. T cells can contribute to the rapid clearance of SARS-CoV-2 and other coronavirus infections1-3. Here we hypothesize that pre-existing memory T cell responses, with cross-protective potential against SARS-CoV-2 (refs. 4-11), would expand in vivo to support rapid viral control, aborting infection. We measured SARS-CoV-2-reactive T cells, including those against the early transcribed replication-transcription complex (RTC)12,13, in intensively monitored healthcare workers (HCWs) who tested repeatedly negative according to PCR, antibody binding and neutralization assays (seronegative HCWs (SN-HCWs)). SN-HCWs had stronger, more multispecific memory T cells compared with a cohort of unexposed individuals from before the pandemic (prepandemic cohort), and these cells were more frequently directed against the RTC than the structural-protein-dominated responses observed after detectable infection (matched concurrent cohort). SN-HCWs with the strongest RTC-specific T cells had an increase in IFI27, a robust early innate signature of SARS-CoV-2 (ref. 14), suggesting abortive infection. RNA polymerase within RTC was the largest region of high sequence conservation across human seasonal coronaviruses (HCoV) and SARS-CoV-2 clades. RNA polymerase was preferentially targeted (among the regions tested) by T cells from prepandemic cohorts and SN-HCWs. RTC-epitope-specific T cells that cross-recognized HCoV variants were identified in SN-HCWs. Enriched pre-existing RNA-polymerase-specific T cells expanded in vivo to preferentially accumulate in the memory response after putative abortive compared to overt SARS-CoV-2 infection. Our data highlight RTC-specific T cells as targets for vaccines against endemic and emerging Coronaviridae.


Asunto(s)
Infecciones Asintomáticas , COVID-19/inmunología , COVID-19/virología , ARN Polimerasas Dirigidas por ADN/inmunología , Células T de Memoria/inmunología , SARS-CoV-2/inmunología , Seroconversión , Proliferación Celular , Estudios de Cohortes , ARN Polimerasas Dirigidas por ADN/metabolismo , Evolución Molecular , Femenino , Personal de Salud , Humanos , Masculino , Proteínas de la Membrana/inmunología , Células T de Memoria/citología , Complejos Multienzimáticos/inmunología , SARS-CoV-2/enzimología , SARS-CoV-2/crecimiento & desarrollo , Transcripción Genética/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA